By Topic

A Finite Difference Method for the Design of Gradient Coils in MRI—An Initial Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhu, M. ; Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University , Hangzhou, China ; Ling Xia ; Feng Liu ; Zhu, J.
more authors

This paper proposes a finite-difference (FD)-based method for the design of gradient coils in MRI. The design method first uses the FD approximation to describe the continuous current density of the coil space and then employs the stream function method to extract the coil patterns. During the numerical implementation, a linear equation is constructed and solved using a regularization scheme. The algorithm details have been exemplified through biplanar and cylindrical gradient coil design examples. The design method can be applied to unusual coil designs such as ultrashort or dedicated gradient coils. The proposed gradient coil design scheme can be integrated into a FD-based electromagnetic framework, which can then provide a unified computational framework for gradient and RF design and patient-field interactions.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 9 )