Cart (Loading....) | Create Account
Close category search window
 

A 200 °C Universal Gate Driver Integrated Circuit for Extreme Environment Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huque, M.A. ; Electr. Power Res. Inst., Knoxville, TN, USA ; Islam, S.K. ; Tolbert, L.M. ; Blalock, B.J.

High-temperature power converters (dc-dc, dc-ac, etc.) have enormous potential in extreme environment applications, including automotive, aerospace, geothermal, nuclear, and well logging. For successful realization of such high-temperature power conversion modules, the associated control electronics also need to perform at high temperature. This paper presents a silicon-on-insulator (SOI) based high-temperature gate driver integrated circuit (IC) incorporating an on-chip low-power temperature sensor and demonstrating an improved peak output current drive over our previously reported work. This driver IC has been primarily designed for automotive applications, where the underhood temperature can reach 200 °C. This new gate driver prototype has been designed and implemented in a 0.8 μm, 2-poly, and 3-metal bipolar CMOS-DMOS (Double-Diffused Metal-Oxide Semiconductor) on SOI process and has been successfully tested for up to 200 °C ambient temperature driving a SiC MOSFET and a SiC normally-ON JFET. The salient feature of the proposed universal gate driver is its ability to drive power switches over a wide range of gate turn-ON voltages such as MOSFET (0 to 20 V), normally-OFF JFET (-7 to 3 V), and normally-ON JFET (-20 to 0 V). The measured peak output current capability of the driver is around 5 A and is thus capable of driving several power switches connected in parallel. An ultralow-power on-chip temperature supervisory circuit has also been integrated into the die to safeguard the driver circuit against excessive die temperature (≥220 °C). This approach utilizes increased diode leakage current at higher temperature to monitor the die temperature. The power consumption of the proposed temperature sensor circuit is below 10 μW for operating temperature up to 200 °C.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 9 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.