By Topic

A machine learning-based approach for thread mapping on transactional memory applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Márcio Castro ; INRIA - LIG Laboratory - Grenoble University, France ; Luís Fabrício Wanderley Góes ; Christiane Pousa Ribeiro ; Murray Cole
more authors

Thread mapping has been extensively used as a technique to efficiently exploit memory hierarchy on modern chip-multiprocessors. It places threads on cores in order to amortize memory latency and/or to reduce memory contention. However, efficient thread mapping relies upon matching application behavior with system characteristics. Particularly, Software Transactional Memory (STM) applications introduce another dimension due to its runtime system support. Existing STM systems implement several conflict detection and resolution mechanisms, which leads STM applications to behave differently for each combination of these mechanisms. In this paper we propose a machine learning-based approach to automatically infer a suitable thread mapping strategy for transactional memory applications. First, we profile several STM applications from the STAMP benchmark suite considering application, STM system and platform features to build a set of input instances. Then, such data feeds a machine learning algorithm, which produces a decision tree able to predict the most suitable thread mapping strategy for new unobserved instances. Results show that our approach improves performance up to 18.46% compared to the worst case and up to 6.37% over the Linux default thread mapping strategy.

Published in:

2011 18th International Conference on High Performance Computing

Date of Conference:

18-21 Dec. 2011