By Topic

Respiratory motion estimation in Nuclear Medicine imaging using a kernel model-based particle filter framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. A. Abd. Rahni ; University Kebangsaan Malaysia, Malaysia and the Centre for Vision, Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU27XH, United Kingdom ; E. Lewis ; K. Wells ; J. Jones

The continual improvement in spatial resolution of Nuclear Medicine (NM) scanners has made accurate compensation of patient motion increasingly important. A major source of corrupting motion in NM acquisition is due to respiration. Therefore a particle filter (PF) approach has been proposed as a powerful method for motion correction in NM. The probabilistic view of the system in the PF has an advantage in that it considers the complexity and uncertainties of respiratory motion. Tests using the XCAT phantom have previously shown the possibility of estimating unseen organ configurations using training data that only consist of a single respiratory cycle. This paper builds upon previous work in two ways: (i) this is the first evaluation of a PF framework using clinical 4D thoracic CT data; and, (ii) this implementation uses a kernel density estimation (KDE) representation for the transition model, thus taking advantage of the PF's ability to use a wider range of stochastic models. The results show some improvement with the use of a KDE-based transition model and indicates that the PF should be applicable to clinical data.

Published in:

Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE

Date of Conference:

23-29 Oct. 2011