By Topic

Wavelength-shifting-fiber scintillation detectors for thermal neutron imaging at SNS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
C. L. Wang ; Neutron Sciences Directorate, Oak Ridge National Laboratory, TN 37831, USA ; L. G. Clonts ; R. G. Cooper ; M. L. Crow
more authors

We have developed a wavelength-Shifting-fiber Scintillator Detector (SSD) with a 0.3 m2 area per module. Each module has 154 × 7 pixels and a 5 mm × 50 mm pixel size. Our goal is to design a large area neutron detector offering higher detection efficiency and higher count-rate capability for Time-Of-Flight (TOF) neutron diffraction in the Spallation Neutron Source (SNS). A ZnS/6LiF scintillator combined with a novel fiber encoding scheme (v.3) was used to record the neutron events. A Cross-fiber Read-Out-Card (CROC) based digital-signal processing electronics and position-determination algorithm was applied for neutron imaging. Neutron-gamma discrimination was carried out using Pulse-Shape Discrimination (PSD). A sandwiched flat scintillator detector can have a detection efficiency close to He-3 tubes (about 10 atm). A single layer and sandwiched flat scintillator detectors have count rate capabilities of about 6,000 and 35,000 cps/cm2, respectively, which can satisfy the count rate requirement of powder diffractometers at SNS. Detectors with v.3 fiber encoding have better image quality and higher spatial resolution than those with previous v.2 fiber encoding.

Published in:

Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE

Date of Conference:

23-29 Oct. 2011