Cart (Loading....) | Create Account
Close category search window
 

Whole Test Suite Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fraser, G. ; Dept. of Comput. Sci., Univ. of Sheffield, Sheffield, UK ; Arcuri, A.

Not all bugs lead to program crashes, and not always is there a formal specification to check the correctness of a software test's outcome. A common scenario in software testing is therefore that test data are generated, and a tester manually adds test oracles. As this is a difficult task, it is important to produce small yet representative test sets, and this representativeness is typically measured using code coverage. There is, however, a fundamental problem with the common approach of targeting one coverage goal at a time: Coverage goals are not independent, not equally difficult, and sometimes infeasible-the result of test generation is therefore dependent on the order of coverage goals and how many of them are feasible. To overcome this problem, we propose a novel paradigm in which whole test suites are evolved with the aim of covering all coverage goals at the same time while keeping the total size as small as possible. This approach has several advantages, as for example, its effectiveness is not affected by the number of infeasible targets in the code. We have implemented this novel approach in the EvoSuite tool, and compared it to the common approach of addressing one goal at a time. Evaluated on open source libraries and an industrial case study for a total of 1,741 classes, we show that EvoSuite achieved up to 188 times the branch coverage of a traditional approach targeting single branches, with up to 62 percent smaller test suites.

Published in:

Software Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.