By Topic

A Hybrid Dynamic Equivalent Using ANN-Based Boundary Matching Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Feng Ma ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Vittal, V.

In this paper, a hybrid dynamic equivalent consisting of both a coherency-based conventional equivalent and an artificial neural network (ANN)-based equivalent is developed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the boundary buses of the retained area. It is designed to compensate for the discrepancy between the full system model and the reduced equivalent developed using any commercial software package, such as the dynamic reduction program (DYNRED), by providing appropriate power injections at all the boundary buses. These injections are provided by the ANN-based equivalent which is trained using the outputs from a trajectory sensitivity simulation of the system response to a candidate set of disturbances. The proposed approach is tested on a system representing a portion of the WECC system. The case study shows that the hybrid dynamic equivalent method can enhance the accuracy of the coherency-based dynamic equivalent without significantly increasing the computational effort.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 3 )