By Topic

Maximizing the Signal-to-Alias Ratio in Non-Uniform Filter Banks for Acoustic Echo Cancellation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rajeev C. Nongpiur ; Department of Electrical and Computer Engineering, University of Victoria, Victoria, Canada ; Dale J. Shpak

A new method for designing non-uniform filter-banks for acoustic echo cancellation is proposed. In the method, the analysis prototype filter design is framed as a convex optimization problem that maximizes the signal-to-alias ratio (SAR) in the analysis banks. Since each sub-band has a different bandwidth, the contribution to the overall SAR from each analysis bank is taken into account during optimization. To increase the degrees of freedom during optimization, no constraints are imposed on the phase or group delay of the filters; at the same time, low delay is achieved by ensuring that the resulting filters are minimum phase. Experimental results show that the filter bank designed using the proposed method results in a sub-band adaptive filter with a much better echo return loss enhancement (ERLE) when compared with existing design methods.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:59 ,  Issue: 10 )