By Topic

Selection of Proper Neural Network Sizes and Architectures—A Comparative Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hunter, D. ; Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA ; Hao Yu ; Pukish, M.S. ; Kolbusz, J.
more authors

One of the major difficulties facing researchers using neural networks is the selection of the proper size and topology of the networks. The problem is even more complex because often when the neural network is trained to very small errors, it may not respond properly for patterns not used in the training process. A partial solution proposed to this problem is to use the least possible number of neurons along with a large number of training patterns. The discussion consists of three main parts: first, different learning algorithms, including the Error Back Propagation (EBP) algorithm, the Levenberg Marquardt (LM) algorithm, and the recently developed Neuron-by-Neuron (NBN) algorithm, are discussed and compared based on several benchmark problems; second, the efficiency of different network topologies, including traditional Multilayer Perceptron (MLP) networks, Bridged Multilayer Perceptron (BMLP) networks, and Fully Connected Cascade (FCC) networks, are evaluated by both theoretical analysis and experimental results; third, the generalization issue is discussed to illustrate the importance of choosing the proper size of neural networks.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:8 ,  Issue: 2 )