By Topic

A 2.45-GHz + 20-dBm Fast Switching Class-E Power Amplifier With 43% PAE and a 18-dB-Wide Power Range in 0.18- \mu \hbox {m} CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Zhisheng Li ; Dept. of Inf. Technol., Ghent Univ., Ghent, Belgium ; Torfs, G. ; Bauwelinck, J. ; Xin Yin
more authors

In this brief, the losses in Class-E power amplifiers (PAs) with finite dc-feed inductance are analyzed. This analysis results in practical analytical expressions, which significantly simplify the design and optimization of Class-E PAs. To demonstrate their applicability, the design of a state-of-the-art 2.45-GHz differential cascode Class-E PA in 0.18- CMOS with on-chip dc-feed inductor is presented. By the proposed combination of a dynamic supply voltage and a dynamic cascode bias voltage, high drain efficiency is achieved over a wide power control range, covering from 2.2 up to 20 dBm. At 20 dBm, a power-added efficiency as high as 43.6% was measured. Additionally, fast envelope switching is obtained by adding a single switch to the common-gate nodes of both the Class-E stage and the second driver stage. Measurements show a rise time of merely 2.5 ns and a 73-dB isolation between the on- and off-states. These figures enable ranging applications with submeter accuracy.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:59 ,  Issue: 4 )