By Topic

A Survival Modeling Approach to Biomedical Search Result Diversification Using Wikipedia

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoshi Yin ; Sch. of Comput. Sci., Beihang Univ., Beijing, China ; Huang, J.X. ; Zhoujun Li ; Xiaofeng Zhou

In this paper, we propose a survival modeling approach to promoting ranking diversity for biomedical information retrieval. The proposed approach concerns with finding relevant documents that can deliver more different aspects of a query. First, two probabilistic models derived from the survival analysis theory are proposed for measuring aspect novelty. Second, a new method using Wikipedia to detect aspects covered by retrieved documents is presented. Third, an aspect filter based on a two-stage model is introduced. It ranks the detected aspects in decreasing order of the probability that an aspect is generated by the query. Finally, the relevance and the novelty of retrieved documents are combined at the aspect level for reranking. Experiments conducted on the TREC 2006 and 2007 Genomics collections demonstrate the effectiveness of the proposed approach in promoting ranking diversity for biomedical information retrieval. Moreover, we further evaluate our approach in the Web retrieval environment. The evaluation results on the ClueWeb09-T09B collection show that our approach can achieve promising performance improvements.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 6 )