By Topic

Adaptive Initial Quantization Parameter Determination for H.264/AVC Video Transcoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhenyu Wu ; Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Hongyang Yu ; Bin Tang ; Chang Wen Chen

Video adaptation through transcoding can provide both bit-rate reduction and resolution reduction to meet various requirements from display devices to network links. One important issue in video transcoding is the design of rate control algorithm in order to achieve target bit rate by adjusting certain coding parameters. Among them, proper selection of initial quantization parameter (QP) has been shown to induce noticeable impact on the performance of video transcoding scheme. Current approaches in initial QP determination are either too complicated or lacking adequate accuracy. This paper presents an adaptive QP initialization for H.264/AVC transcoding. First, we carefully build the models of R-MSE and QP-PSNR. Then, we introduce an R-QP model and allocate an optimal target buffer to the first frame by considering its temporal importance. The analysis and the R-QP model lead to a novel scheme to determine the initial QP adaptively to achieve more accurate estimation. Experiments have been carried out to demonstrate that substantial gains in objective quality measures can be consistently obtained. Without increasing complexity in transcoding system, the proposed adaptive initial QP scheme outperforms current existing schemes for various video sequences tested in this research.

Published in:

Broadcasting, IEEE Transactions on  (Volume:58 ,  Issue: 2 )