By Topic

Trellis-Search Based Soft-Input Soft-Output MIMO Detector: Algorithm and VLSI Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang Sun ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Cavallaro, J.R.

In this paper, we propose a trellis-search based soft-input soft-output detection algorithm and its very large scale integration (VLSI) architecture for iterative multiple-input multiple-output (MIMO) receivers. We construct a trellis diagram to represent the search space of a transmitted MIMO signal. With the trellis model, we evenly distribute the workload of candidates searching among multiple trellis nodes for parallel processing. The search complexity is significantly reduced because the number of candidates is greatly limited at each trellis node. By leveraging the trellis structure, we develop an approximate Log-MAP algorithm by using a small list of largest exponential terms to compute the LLR (log-likelihood ratio) values. The trellis-search based detector has a fixed-complexity and is very suitable for parallel VLSI implementation. As a case study, we have designed and synthesized a trellis-search based soft-input soft-output MIMO detector for a 4 × 4 16-QAM system using a 1.08 V TSMC 65 nm technology. The detector can achieve a maximum throughput of 1.7 Gb/s with a core area of 1.58 mm2.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 5 )