Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Relay Precoding for Non-Regenerative MIMO Relay Systems with Partial CSI in the Presence of Interferers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheol Jeong ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, ON, Canada ; Hyung-Myung Kim ; Hyoung-Kyu Song ; Il-Min Kim

In this paper, a relay precoding problem is considered in a non-regenerative multiple-input multiple output (MIMO) relay system, when multiple interferers exist near the destination. The relay has the perfect channel state information (CSI) of the source-relay link and only the covariance information of the relay-destination link. Also, we assume that the training signals of the interferers are known at the destination, and thus, the covariance information of the channels from the interferers to the destination can be estimated at the destination and the information is fed back to the relay. For this scenario, the structure of the optimal relay precoder is derived to maximize the average capacity seen by the relay under a relay transmit power constraint. For the derivation of the optimal relay precoder, a new partial ordering result for the outage probability and the ergodic capacity of spatially correlated MIMO channels is derived. Numerical results demonstrate that the proposed scheme considerably improves the performance. Overall, the contributions of this paper are twofold: i) a new partial ordering result for MIMO channels is derived and ii) the structure of the optimal relay precoder is derived using the partial ordering result.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 4 )