By Topic

Parallel processing techniques for the processing of synthetic aperture radar data on GPUs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
William Chapman ; University of Florida, Department of CISE, Gainesville, 32611-6120, USA ; Sanjay Ranka ; Sartaj Sahni ; Mark Schmalz
more authors

This paper presents a design for parallel processing of synthetic aperture radar (SAR) data using one or more Graphics Processing Units (GPUs). Our design supports real- time reconstruction of a two-dimensional image from a matrix of echo pulses and their corresponding response values. Key to our design is a dual partitioning scheme that divides the output image into tiles and divides the input matrix into sets of pulses. Pairs comprised of an image tile and a pulse set are distributed to thread blocks in a GPU, thus facilitating parallel computation. Memory access latency is masked by the GPU's low-latency thread scheduling. Our performance analysis quantifies latency as a function of the input and output parameters. Experimental results were generated with an nVidia Tesla C2050 GPU having maximum throughput of 1030 Gflop/s. Our design achieves peak throughput of 293 Gflop/s, which scales well for output image sizes from 2,048 × 2,048 pixels to 4,096 × 4,096 pixels. Higher throughput can be obtained by distributing the pulse matrix across multiple GPUs and combining the results at a host device.

Published in:

2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)

Date of Conference:

14-17 Dec. 2011