By Topic

Design, Implementation, and Performance of a Load Balancer for SIP Server Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hongbo Jiang ; Huazhong University of Science and Technolog ; Arun Iyengar ; Erich Nahum ; Wolfgang Segmuller
more authors

This paper introduces several novel load-balancing algorithms for distributing Session Initiation Protocol (SIP) requests to a cluster of SIP servers. Our load balancer improves both throughput and response time versus a single node while exposing a single interface to external clients. We present the design, implementation, and evaluation of our system using a cluster of Intel x86 machines running Linux. We compare our algorithms to several well-known approaches and present scalability results for up to 10 nodes. Our best algorithm, Transaction Least-Work-Left (TLWL), achieves its performance by integrating several features: knowledge of the SIP protocol, dynamic estimates of back-end server load, distinguishing transactions from calls, recognizing variability in call length, and exploiting differences in processing costs for different SIP transactions. By combining these features, our algorithm provides finer-grained load balancing than standard approaches, resulting in throughput improvements of up to 24% and response-time improvements of up to two orders of magnitude. We present a detailed analysis of occupancy to show how our algorithms significantly reduce response time.

Published in:

IEEE/ACM Transactions on Networking  (Volume:20 ,  Issue: 4 )