By Topic

Error Probability Bounds for Balanced Binary Relay Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhenliang Zhang ; Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA ; Ali Pezeshki ; William Moran ; Stephen D. Howard
more authors

We study the detection error probability associated with a balanced binary relay tree, where the leaves of the tree correspond to N identical and independent sensors. The root of the tree represents a fusion center that makes the overall detection decision. Each of the other nodes in the tree is a relay node that combines two binary messages to form a single output binary message. Only the leaves are sensors. In this way, the information from the sensors is aggregated into the fusion center via the relay nodes. In this context, we describe the evolution of the Type I and Type II error probabilities of the binary data as it propagates from the leaves toward the root. Tight upper and lower bounds for the total error probability at the fusion center as functions of N are derived. These characterize how fast the total error probability converges to 0 with respect to N , even if the individual sensors have error probabilities that converge to 1/2.

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 6 )