By Topic

Image Forgery Localization via Block-Grained Analysis of JPEG Artifacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bianchi, T. ; Dept. of Electron. & Telecommun., Univ. of Florence, Firenze, Italy ; Piva, A.

In this paper, we propose a forensic algorithm to discriminate between original and forged regions in JPEG images, under the hypothesis that the tampered image presents a double JPEG compression, either aligned (A-DJPG) or nonaligned (NA-DJPG). Unlike previous approaches, the proposed algorithm does not need to manually select a suspect region in order to test the presence or the absence of double compression artifacts. Based on an improved and unified statistical model characterizing the artifacts that appear in the presence of both A-DJPG or NA-DJPG, the proposed algorithm automatically computes a likelihood map indicating the probability for each 8 × 8 discrete cosine transform block of being doubly compressed. The validity of the proposed approach has been assessed by evaluating the performance of a detector based on thresholding the likelihood map, considering different forensic scenarios. The effectiveness of the proposed method is also confirmed by tests carried on realistic tampered images. An interesting property of the proposed Bayesian approach is that it can be easily extended to work with traces left by other kinds of processing.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:7 ,  Issue: 3 )