By Topic

New Improvements in Parallel Implementation of N-FINDR Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenfei Luo ; Sch. of Geogr. Sci., South China Normal Univ., Guangzhou, China ; Bing Zhang ; Xiuping Jia

Endmember extraction (EE) is the first step in hyperspectral data unmixing. N-FINDR is one of the most commonly used EE algorithms. Nevertheless, its computational complexity is high, particularly, for a large data set. Following a parallel version of N-FINDR, i.e., P-FINDR, further improvements are presented in this paper. First, generic endmember re-extraction operation (GERO) and multiple search paths are introduced such that multiple endmembers are extracted in parallel. Second, by making full use of the advantages of the proposed algorithms, two extended schemes, i.e., extended mapping rule and multiple-stage GERO are presented, which can reduce synchronous cost and provide steady parallel performance. In experiments, the proposed algorithms have been quantitatively evaluated. The results demonstrate that they can outperform the conventional parallel computing and do not degrade the quality of EE.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 10 )