By Topic

Noncontact Selective Laser-Assisted Placement of Thinned Semiconductor Dice

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Miller, R. ; Center for Nanoscale Sci. & Eng., North Dakota State Univ., Fargo, ND, USA ; Marinov, V. ; Swenson, O. ; Zhigang Chen
more authors

New laser-induced forward transfer (LIFT) techniques promise to be a disruptive technology by enabling high-volume placement of ultrathin bare dice. Limitations of current die-attach techniques such as pick-and-place are presented and discussed which inspired the development of this new placement method. The thermo-mechanical selective laser-assisted die transfer (tmSLADT) process is introduced as an application of the unique blistering behavior of a dynamic releasing layer when irradiated by low-energy-focused UV laser pulses. The potential for tmSLADT to be the next generation LIFT technique is demonstrated by the “touchless” transfer of 65-μm-thick silicon tiles between two substrates spaced 195 μm apart. Additionally, the advantages of an enclosed blister actuator mechanism over previously studied ablative and thermal releasing techniques are discussed. Finally, experimental results indicate that this nonoptimized die transfer process compares with, and may exceed, the placement precision of current assembly techniques.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:2 ,  Issue: 6 )