By Topic

Efficient Dipole Parameter Estimation in EEG Systems With Near-ML Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shun Chi Wu ; Department of Electrical Engineering and Computer Science, University of California, Irvine, USA ; A. Lee Swindlehurst ; Po T. Wang ; Zoran Nenadic

Source signals that have strong temporal correlation can pose a challenge for high-resolution EEG source localization algorithms. In this paper, we present two methods that are able to accurately locate highly correlated sources in situations where other high-resolution methods such as multiple signal classification and linearly constrained minimum variance beamforming fail. These methods are based on approximations to the optimal maximum likelihood (ML) approach, but offer significant computational advantages over ML when estimates of the equivalent EEG dipole orientation and moment are required in addition to the source location. The first method uses a two-stage approach in which localization is performed assuming an unstructured dipole moment model, and then the dipole orientation is obtained by using these estimates in a second step. The second method is based on the use of the noise subspace fitting concept, and has been shown to provide performance that is asymptotically equivalent to the direct ML method. Both techniques lead to a considerably simpler optimization than ML since the estimation of the source locations and dipole moments is decoupled. Examples using data from simulations and auditory experiments are presented to illustrate the performance of the algorithms.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:59 ,  Issue: 5 )