Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Depth Discontinuity-Based Cup Segmentation From Multiview Color Retinal Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Joshi, G. ; Centre for Visual Inf. Technol., Int. Inst. of Inf. Technol. Hyderabad, Hyderabad, India ; Sivaswamy, J. ; Krishnadas, S.R.

Accurate segmentation of the cup region from retinal images is needed to derive relevant measurements for glaucoma assessment. A novel, depth discontinuity (in the retinal surface)-based approach to estimate the cup boundary is proposed in this paper. The proposed approach shifts focus from the cup region used by existing approaches to cup boundary. The given set of images, acquired sequentially, are related via a relative motion model and the depth discontinuity at the cup boundary is determined from cues such as motion boundary and partial occlusion. The information encoded by these cues is used to approximate the cup boundary with a set of best-fitting circles. The final boundary is found by considering points on these circles at different sectors using a confidence measure. Four different kinds of data sets ranging from synthetic to real image pairs, covering different multiview scenarios, have been used to evaluate the proposed method. The proposed method was found to yield an error reduction of 16% for cup-to-disk vertical diameter ratio (CDR) and 13% for cup-to-disk area ratio (CAR) estimation, over an existing monocular image-based cup segmentation method. The error reduction increased to 33% in CDR and 18% in CAR with the addition of a third view (image) which indicates the potential of the proposed approach.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 6 )