By Topic

Robust and Precise Registration of Oblique Images Based on Scale-Invariant Feature Transformation Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Huachao ; Inst. of Photogrammetry & Remote Sensing, China Univ. of Min. & Technol., Xuzhou, China ; Zhang Shubi ; Wang Yongbo

The automatic registration of oblique images taken at different viewpoints remains a challenge until today. Based on scale-invariant feature transformation (SIFT) algorithm, a robust and accurate weighted least square matching (LSM) (SIFT/LSM) method modeled using 2-D projective transformation is proposed for highly accurate registration of oblique images. Normalized cross correlation (NCC) metric modified by an adaptive scale and orientation of SIFT features (SIFT/NCC) is proposed to obtain a good initial estimation for the SIFT/LSM. For practical use, image matching is implemented using a coarse-to-fine multistage strategy by sequentially incorporating the standard SIFT algorithm, SIFT/NCC, and SIFT/LSM. Experiments conducted on oblique images of real-world scenes demonstrate the feasibility of the proposed approach.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:9 ,  Issue: 4 )