Cart (Loading....) | Create Account
Close category search window

On the Capacity of Intensity-Modulated Direct-Detection Systems and the Information Rate of ACO-OFDM for Indoor Optical Wireless Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xia Li ; Dept. of Electr. & Comput. Syst. Eng., Monash Univ., Clayton, VIC, Australia ; Vucic, J. ; Jungnickel, V. ; Armstrong, J.

In this paper we derive information theoretic results for asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) in an intensity modulated direct detection (IM/DD) optical communication system subject to a range of constraints. ACO-OFDM is a form of OFDM designed for IM/DD systems. It is an effective solution to intersymbol interference (ISI) caused by a dispersive channel and also requires less optical power than conventional optical modulation formats. Although the classical Shannon capacity formula cannot be applied directly to an IM/DD system, we show that when ACO-OFDM is used in an IM/DD system, it can be adapted to calculate the information rate of the data-carrying odd frequency subcarriers. As a result conventional water filling techniques can be used for a frequency selective channel. These results are applied to indoor wireless systems using realistic parameters for the transmitter, receiver and channel. The maximum rate at which data can be transmitted depends on the channel, the electrical bandwidth and the transmitted optical power. Even when there is no line of sight (LOS) path, when the electrical bandwidth is limited to 50 MHz and the average optical power is limited to 0.4 W, data rates of approximately 80 Mbit/s can theoretically be achieved.

Published in:

Communications, IEEE Transactions on  (Volume:60 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.