By Topic

Plasma deposition of thin films utilizing the anodic vacuum arc

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. Ehrich ; Inst. fuer Laser und Plasmaphys., Essen Univ., West Germany ; B. Hasse ; M. Mausbach ; K. G. Muller

Anodic vacuum arcs operating with cold cathodes in the spot mode and hot evaporating anodes are investigated to explore their technical potential as a plasma deposition technique. This discharge provides a unique source of a highly ionized, metal vapor plasma by autogeneration of the working gas to evaporation of the anode. This gas-free and droplet-free metal vapor plasma expands into the ambient vacuum (10-4 mbar) and produces thin metallic films at the surface of substrates. An analysis of Al and Cu plasmas at the position of a possible substrate for arc currents between 20 and 200 A leads to the following results: electron densities, 1015-1018/ m3; degree of ionization, 0.5-25%; directed ion energy, 5 eV; and electron temperatures, 0.2-1 eV. Metallic coatings generated with deposition rates between 0.1 and 100 nm/s show the following properties: purity, 99.9%; polycrystalline structure with grain sizes between a few and a few hundred nm, same mass density as the respective bulk material, electrical conductivity rather close to that of the bulk material, and excellent optical properties. The coatings show good adhesion, which can be enhanced by a plasma-supported pretreatment of the substrate surface and by an acceleration of the ions towards the substrate

Published in:

IEEE Transactions on Plasma Science  (Volume:18 ,  Issue: 6 )