By Topic

On the Fault-Detection Capabilities of Adaptive Random Test Case Prioritization: Case Studies with Large Test Suites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhi Quan Zhou ; Sch. of Comput. Sci. & Software Eng., Univ. of Wollongong, Wollongong, NSW, Australia ; Sinaga, A. ; Susilo, W.

An adaptive random (AR) testing strategy has recently been developed and examined by a growing body of research. More recently, this strategy has been applied to prioritizing regression test cases based on code coverage using the concepts of Jaccard Distance (JD) and Coverage Manhattan Distance (CMD). Code coverage, however, does not consider frequency, furthermore, comparison between JD and CMD has not yet been made. This research fills the gap by first investigating the fault-detection capabilities of using frequency information for AR test case prioritization, and then comparing JD and CMD. Experimental results show that "coverage" was more useful than "frequency" although the latter can sometimes complement the former, and that CMD was superior to JD. It is also found that, for certain faults, the conventional "additional" algorithm (widely accepted as one of the best algorithms for test case prioritization) could perform much worse than random testing on large test suites.

Published in:

System Science (HICSS), 2012 45th Hawaii International Conference on

Date of Conference:

4-7 Jan. 2012