By Topic

A Multirate Approach for Time Domain Simulation of Very Large Power Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haut, B. ; Tractebel Eng. S.A., Brussels, Belgium ; Savcenco, V. ; Panciatici, P.

The time evolution of power systems is modeled by systems of differential and algebraic equations (DAEs) [8]. The variables involved in these DAEs may exhibit different time scales. Some of the variables can be highly active while other variables can stay constant during the entire time integration period. In standard numerical time integration methods for DAEs the most active variables impose the time step for the whole system. We present a strategy, which allows the use of different, local time steps over the variables. The partitioning of the components of the system in different classes of activity is performed automatically based on the topology of the power system. The performance of the multirate approach for two case studies is presented.

Published in:

System Science (HICSS), 2012 45th Hawaii International Conference on

Date of Conference:

4-7 Jan. 2012