By Topic

Effects of the transparent cathode on the performance of a relativistic magnetron with axial radiation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Li, Wei ; College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China ; Liu, Yong-Gui ; Jun Zhang ; Ting Shu
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Experimental investigation of the transparent cathode used in a relativistic magnetron with axial radiation is reported in this paper. The transparent cathode is composed of six separate stalks with the diameter of 6 mm. Under the working condition of 549 kV and ∼0.38 T, the relativistic magnetron with the transparent cathode experimentally produces a 550 MW microwave. The radiation mode is TE11 at the frequency of 2.35 GHz. The total efficiency is 16.7%. The variations of the relative positions between the separate stalks and the anode blocks can perform the maximum difference of 4 ns in microwave duration. Compared with the conventional solid cathode, the transparent cathode provides faster startup time of 12 ns, relatively wider pulse duration of 35% and relatively higher efficiency of 10.6%.

Published in:

Review of Scientific Instruments  (Volume:83 ,  Issue: 2 )