Cart (Loading....) | Create Account
Close category search window

Hybrid verification of a hardware modular reduction engine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Wide-operand modular math functions pose an enormous challenge for verification. We present a novel method to verify a modular reduction engine implemented as a finite state machine (FSM), leveraging a combination of model checking and theorem proving. As a first step of the verification, preconditions and post-conditions for each state transition of the FSM are identified. Next the implications from the pre-conditions to the post-conditions are verified using a model checker. The last step entails combining all the implications in a theorem prover to derive the overall correctness proof. We carried out this verification using a hybrid formal verification platform comprising the ACL2 theorem prover and IBM's model checker SixthSense, along with numerous techniques to cope with the complexities of this verification task. To our knowledge, this is the first published method for the exhaustive verification of an RTL-implementation of a wide-operand industrial modular reduction engine.

Published in:

Formal Methods in Computer-Aided Design (FMCAD), 2011

Date of Conference:

Oct. 30 2011-Nov. 2 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.