Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Video face matching using subset selection and clustering of probabilistic Multi-Region Histograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mau, S. ; NICTA, St. Lucia, QLD, Australia ; Chen, S. ; Sanderson, C. ; Lovell, B.C.

Balancing computational efficiency with recognition accuracy is one of the major challenges in real-world video-based face recognition. A significant design decision for any such system is whether to process and use all possible faces detected over the video frames, or whether to select only a few `best' faces. This paper presents a video face recognition system based on probabilistic Multi-Region Histograms to characterise performance trade-offs in: (i) selecting a subset of faces compared to using all faces, and (ii) combining information from all faces via clustering. Three face selection metrics are evaluated for choosing a subset: face detection confidence, random subset, and sequential selection. Experiments on the recently introduced MOBIO dataset indicate that the usage of all faces through clustering always outperformed selecting only a subset of faces. The experiments also show that the face selection metric based on face detection confidence generally provides better recognition performance than random or sequential sampling. Moreover, the optimal number of faces varies drastically across selection metric and subsets of MOBIO. Given the trade-offs between computational effort, recognition accuracy and robustness, it is recommended that face feature clustering would be most advantageous in batch processing (particularly for video-based watchlists), whereas face selection methods should be limited to applications with significant computational restrictions.

Published in:

Image and Vision Computing New Zealand (IVCNZ), 2010 25th International Conference of

Date of Conference:

8-9 Nov. 2010