We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A hybrid image representation for indoor scene classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhibin Niu ; Inst. of Image Process. & Pattern Recognition, Shanghai Jiao Tong Univ., Shanghai, China ; Yue Zhou ; Kun Shi

Although scene classification has been studied for decades, indoor scene recognition remains challenging due to its large view point variance and massive irregular artefacts. In fact, most existing methods for outdoor scene classification perform poorly in the indoor situation. To address the problem, we propose a hybrid image representation by combining the global information with the local structure of the scene. First, the global discriminative information is captured by pyramid GIST feature. Second, the local structure is encoded by the bag of features method with Histogram Intersection Kernel (HIK). Finally, HIK based SVM is employed for learning and classification. Experiments on the MIT indoor scene database show that our approach could significantly improve the recognition accuracy of the state-of-art methods by about 14%.

Published in:

Image and Vision Computing New Zealand (IVCNZ), 2010 25th International Conference of

Date of Conference:

8-9 Nov. 2010