By Topic

Accurate visual word construction using a supervised approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Basura Fernando ; CIMET, University Jean Monnet, F-42023, Saint Etienne France ; Elisa Fromont ; Damien Muselet ; Marc Sebban

Most of the bag of visual words models are used to resorting to clustering techniques such as the K-means algorithm, to construct visual dictionaries. In order to improve their efficiency in the context of multi-class image classification tasks, we present in this paper a new incremental weighted average and gradient descent-based clustering algorithm which optimizes the visual word detection by the use of the class label of training examples. We show that this new supervised vector quantization allows us to better reveal concept or category-specific local feature distributions over the feature space. A large comparison with the standard K-means algorithm on the PASCAL VOC-2007 dataset is carried out. The results show that our visual word construction technique is much more suitable for learning efficient classifiers with Support Vector Machine and Random Forest algorithms.

Published in:

Image and Vision Computing New Zealand (IVCNZ), 2010 25th International Conference of

Date of Conference:

8-9 Nov. 2010