Cart (Loading....) | Create Account
Close category search window
 

Quantitative analysis ageing status of natural ester-paper insulation and mineral oil-paper insulation by polarization/depolarization current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jian Hao ; State Key Lab. of Power Transm. Equip. & Syst. Security & New Technol., Chongqing Univ., Chongqing, China ; Ruijin Liao ; Chen, G. ; Zhiqin Ma
more authors

Polarization and Depolarization Current (PDC) technique is an effective tool to assess the condition of oil-paper insulation system in power transformers. So far the PDC behaviors of mineral oil-paper insulation have been widely investigated. However, with the increasing number of transformer choosing natural ester as its insulation oil, it is important to investigate the PDC characteristics of natural ester-paper insulation to see whether the PDC technique can also be used to assess the condition of new insulation system using natural ester in transformers accurately. In this research, natural esterpaper insulation sample and mineral oil-paper insulation sample were subjected to thermally accelerated ageing experiment at 110°C for 120 days. The PDC characteristics of natural ester-paper insulation sample and mineral oil-paper insulation sample were compared over the ageing process. A new method for assessing the ageing condition of the oil-paper insulation in terms of the depolarization charge quantity was proposed. Results show that the polarization/depolarization current of natural ester-paper insulation sample is higher than that of mineral oil-paper insulation sample with the same ageing intervals. The depolarization charge quantity of both kinds of oil-paper insulation sample is very sensitive to their ageing conditions. There is an exponential relation between the stable depolarization charge quantity of both kinds of oil-paper insulation sample and the degree of polymerization (DP) of paper. The depolarization charge quantity can be used to predict the ageing condition of oil-paper insulation providing the measurement temperature is kept the same.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:19 ,  Issue: 1 )

Date of Publication:

February 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.