Cart (Loading....) | Create Account
Close category search window

Enhancement of Ion Beam Acceleration Efficiency in Isochronous Cyclotrons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ilic, A.Z. ; Lab. of Phys. (010), Vinca Inst. of Nucl. Sci., Belgrade, Serbia ; Ristic-Djurovic, J.L. ; Cirkovic, S. ; Neskovic, N.

A novel method for efficient analysis of ion beam acceleration in an isochronous cyclotron is proposed. Numerical simulation is used to perform multiple beam dynamics analyses on the conveniently chosen subsets of data; consequently, the total quantity of studied data is significantly reduced. The obtained results provide direct insight into beam behavior and quality of acceleration. Therefore, the analysis is not only efficient, but detailed and systematic as well. It is used to assess the impact of the accelerated orbit optimization to the enhancement of acceleration efficiency when study is extended from a single test ion to the complete ion beam consideration.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 2 )

Date of Publication:

April 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.