Cart (Loading....) | Create Account
Close category search window
 

Radiation Induced Absorption in Rare Earth Doped Optical Fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Lezius, M. ; Menlo Syst. GmbH, Martinsried, Germany ; Predehl, K. ; Stower, W. ; Turler, A.
more authors

We have investigated the radiation induced absorption (RIA) of optical fibers with high active ion concentration. Comparing our results to the literature leads us to the conclusion that RIA appears to be only weakly dependent on the rare earth dopant concentration. Instead, co-dopants like Al, Ge, or P and manufacturing processes seem to play the major role for the radiation sensitivity. It is also observed that different types of irradiation cause very similar RIA at the same dose applied, with the exception at very high dose rates. It has been studied how RIA can be efficiently reduced via moderate heating. Recovery of up to 70% of the original transmission has been reached after annealing at 450 K. We conclude that radiation induced color centers have weak binding energies between 20 and 40 meV. This suggests that annealing could become a key strategy for an improved survival of rare earth doped fibers in radiative environments, opening up new possibilities for long-term missions in space.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 2 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.