By Topic

Interpolation-Based Parameterized Model Order Reduction of Delayed Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Francesco Ferranti ; Department of Information Technology, Internet Based Communication Networks and Services (IBCN), Ghent University-IBBT, Gent, Belgium ; Michel Nakhla ; Giulio Antonini ; Tom Dhaene
more authors

Three-dimensional electromagnetic methods are fundamental tools for the analysis and design of high-speed systems. These methods often generate large systems of equations, and model order reduction (MOR) methods are used to reduce such a high complexity. When the geometric dimensions become electrically large or signal waveform rise times decrease, time delays must be included in the modeling. Design space optimization and exploration are usually performed during a typical design process that consequently requires repeated simulations for different design parameter values. Efficient performing of these design activities calls for parameterized model order reduction (PMOR) methods, which are able to reduce large systems of equations with respect to frequency and other design parameters of the circuit, such as layout or substrate features. We propose a novel PMOR method for neutral delayed differential systems, which is based on an efficient and reliable combination of univariate model order reduction methods, a procedure to find scaling and frequency shifting coefficients and positive interpolation schemes. The proposed scaling and frequency shifting coefficients enhance and improve the modeling capability of standard positive interpolation schemes and allow accurate modeling of highly dynamic systems with a limited amount of initial univariate models in the design space. The proposed method is able to provide parameterized reduced order models passive by construction over the design space of interest. Pertinent numerical examples validate the proposed PMOR approach.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:60 ,  Issue: 3 )