By Topic

A New Technique for Tracking the Global Maximum Power Point of PV Arrays Operating Under Partial-Shading Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eftichios Koutroulis ; Department of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece ; Frede Blaabjerg

The power-voltage characteristic of photovoltaic (PV) arrays operating under partial-shading conditions exhibits multiple local maximum power points (MPPs). In this paper, a new method to track the global MPP is presented, which is based on controlling a dc/dc converter connected at the PV array output, such that it behaves as a constant input-power load. The proposed method has the advantage that it can be applied in either stand-alone or grid-connected PV systems comprising PV arrays with unknown electrical characteristics and does not require knowledge about the PV modules configuration within the PV array. The experimental results verify that the proposed global MPP method guarantees convergence to the global MPP under any partial-shading conditions. Compared with past-proposed methods, the global MPP tracking process is accomplished after far fewer PV array power perturbation steps.

Published in:

IEEE Journal of Photovoltaics  (Volume:2 ,  Issue: 2 )