By Topic

Detecting Mutual Awareness Events

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meir Cohen ; Israel Institute of Technology, Haifa ; Ilan Shimshoni ; Ehud Rivlin ; Amit Adam

It is quite common that multiple human observers attend to a single static interest point. This is known as a mutual awareness event (MAWE). A preferred way to monitor these situations is with a camera that captures the human observers while using existing face detection and head pose estimation algorithms. The current work studies the underlying geometric constraints of MAWEs and reformulates them in terms of image measurements. The constraints are then used in a method that 1) detects whether such an interest point does exist, 2) determines where it is located, 3) identifies who was attending to it, and 4) reports where and when each observer was while attending to it. The method is also applied on another interesting event when a single moving human observer fixates on a single static interest point. The method can deal with the general case of an uncalibrated camera in a general environment. This is in contrast to other work on similar problems that inherently assumes a known environment or a calibrated camera. The method was tested on about 75 images from various scenes and robustly detects MAWEs and estimates their related attributes. Most of the images were found by searching the Internet.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:34 ,  Issue: 12 )