By Topic

Joint Physical-Layer and System-Level Power Management for Delay-Sensitive Wireless Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mastronarde, N. ; Dept. of Electr. Eng., State Univ. of New York at Buffalo, Buffalo, NY, USA ; Van Der Schaar, M.

We consider the problem of energy-efficient point-to-point transmission of delay-sensitive data (e.g., multimedia data) over a fading channel. Existing research on this topic utilizes either physical-layer centric solutions, namely power-control and adaptive modulation and coding (AMC), or system-level solutions based on dynamic power management (DPM); however, there is currently no rigorous and unified framework for simultaneously utilizing both physical-layer centric and system-level techniques to achieve the minimum possible energy consumption, under delay constraints, in the presence of stochastic and a priori unknown traffic and channel conditions. In this paper, we propose such a framework. We formulate the stochastic optimization problem as a Markov decision process (MDP) and solve it online using reinforcement learning (RL). The advantages of the proposed online method are that 1) it does not require a priori knowledge of the traffic arrival and channel statistics to determine the jointly optimal power-control, AMC, and DPM policies; 2) it exploits partial information about the system so that less information needs to be learned than when using conventional reinforcement learning algorithms; and 3) it obviates the need for action exploration, which severely limits the adaptation speed and runtime performance of conventional reinforcement learning algorithms. Our results show that the proposed learning algorithms can converge up to two orders of magnitude faster than a state-of-the-art learning algorithm for physical layer power-control and up to three orders of magnitude faster than conventional reinforcement learning algorithms.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:12 ,  Issue: 4 )