By Topic

Security and Discoverability of Spread Dynamics in Cyber-Physical Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sandip Roy ; Washington State University, Pullman ; Mengran Xue ; Sajal K. Das

Motivated by the increasing need for developing automated decision-support tools for cyber-physical networks subject to uncertainties, we have been pursuing development of a new control-theoretic framework for network security and vulnerability. In this paper, we build on the proposed framework to put forth concrete definitions for security and (dually) discoverability, for a class of models that can represent dynamics of numerous cyber-physical networks of interest: namely, dynamical network spread models. These security and discoverability definitions capture whether or not, and to what extent, a stakeholder can infer the temporal dynamics of the spread from localized and noisy measurements. We then equivalence these security and security-level definitions to the control-theoretic notions of observability and optimal estimation, and so obtain explicit algebraic and spectral conditions for security and analyses of the security level. Further drawing on graph-theory constructs, a series of graphical conditions for security, as well as characterizations of security levels, are derived. A case study on zoonotic disease spread is also included, to illustrate concrete application of the analyses in management of cyber-physical infrastructure networks.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:23 ,  Issue: 9 )