By Topic

A Parallel IRRWBF LDPC Decoder Based on Stream-Based Processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tiwari, H.D. ; Dept. of Electron. Eng., Konkuk Univ., Seoul, South Korea ; Huynh Ngoc Bao ; Yong Beom Cho

Low-density parity check (LDPC) codes have gained much attention due to their use of various belief-propagation (BP) decoding algorithms to impart excellent error-correcting capability. The BP decoders are quite simple; however, their computation-intensive and repetitive process prohibits their use in energy-sensitive applications such as sensor networks. Bit flipping-based decoding algorithms, especially implementation-efficient, reliability ratio-based, weighted bit-flipping (IRRWBF) decoding; have shown an excellent tradeoff between error-correction performance and implementation cost. In this paper, we show that with IRRWBF, iterative re-computation can be replaced by iterative selective updating. When compared with the original algorithm, simulation results show that, decoding speed can be increased by 200 to 600 percent , as the number of decoding iterations is increased from 5 to 1,000. The decoding steps are broken down into various stages such that the update operations are mostly of the single-instruction, multiple-data (SIMD) type. In this paper, we show that by using Intel Wireless MMX 2 accelerating technology in the proposed algorithm, the speed increased by 500 to 1,500 percent. The results of implementing the proposed scheme using an Intel/Marvell PXA320 (806 MHz) CPU are presented. The proposed scheme can be used effectively in real-time LDPC codes for energy-sensitive mobile devices.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 12 )