By Topic

A Memory-Efficient Tables-and-Additions Method for Accurate Computation of Elementary Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Low, J.Y.L. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Ching Chuen Jong

The tables-and-additions methods for accurate computation of elementary functions are fast in computation speed but require large memory. A memory-efficient method named as the integrated Add-Table Lookup-Add (iATA) is proposed in this paper. In iATA, the mathematical formulation for computing the elementary functions is derived without using the central difference formulation to save memory. Three additional techniques, specifically the carry select technique, symmetry property exploitation and unequal partitioning of input with the aid of error analysis, are integrated in iATA to further reduce the memory size. The experimental results show that the proposed method is able to achieve higher memory efficiency than the best existing tables-and-additions methods. For the reciprocal and the natural logarithm function, iATA saves 23.63 and 61.39 percent of memory when compared to the best existing results obtained, respectively, by the unified Multipartite Table Method [39] and the Symmetric Table Addition Method [37].

Published in:

Computers, IEEE Transactions on  (Volume:62 ,  Issue: 5 )