Cart (Loading....) | Create Account
Close category search window
 

Hardware-based generation of independent subtraces of instructions in clustered processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ubal, R. ; Electr. & Comput. Eng. Dept., Northeastern Univ., Boston, MA, USA ; Sahuquillo, J. ; Petit, S. ; Lopez, P.
more authors

Multicore chips are currently dominating the microprocessor market as designs that improve performance and sustain power consumption. However, complex core features must be still considered to provide good performance for existing sequential applications. An effective approach to reduce core complexity without dramatically sacrificing performance is to distribute critical processor structures by using clustered microarchitectures. In these designs, communication latency among clusters is a critical performance bottleneck, and a good steering algorithm is required to reduce intercluster communication. In this paper, we propose a new energy-efficient microarchitectural approach that reduces intercluster communication by detecting and generating independent chains of instructions, referred to as subtraces, from the execution of sequential programs. The devised mechanism has been modeled on an x86-based trace-cache processor, where subtraces are built in the fill unit, stored in a trace cache, and individually steered to different clusters. Experimental results show that the proposal reaches performance speedups around 7 and 15 percent for point-to-point and bus-based interconnects, respectively, while achieving energy savings of up to 12 percent.

Published in:

Computers, IEEE Transactions on  (Volume:62 ,  Issue: 5 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.