By Topic

An Interacting Stochastic Models Approach for the Performance Evaluation of DSRC Vehicular Safety Communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoyan Yin ; Duke University, Durham ; Xiaomin Ma ; Kishor S. Trivedi

In this paper, an analytic model is proposed for the performance evaluation of vehicular safety related services in the dedicated short range communications (DSRC) system on highways. The generation and service of safety messages in each vehicle is modeled by a generalized M/G/1 queue. The overall model is a set of interacting M/G/1 queues, one queue for each vehicle. The interaction is that the server is shared as it is the contention medium. To make the model scalable, we use semi-Markov process (SMP) model to capture the shared server's behavior from one tagged vehicle's perspective, where the medium contention and back off behavior for this vehicle and influences from other vehicles are considered. Furthermore, this SMP interacts with the tagged vehicle's own M/G/1 queue through fixed-point iteration. The proof for the existence, uniqueness and convergence of the fixed point is provided. Based on the fixed-point solution, performance indices including mean transmission delay, packet delivery ratio (PDR), and packet reception ratio (PRR) are derived. Analytic-numeric results are verified through extensive simulations under various network parameters. Compared with the existing models, the proposed SMP model facilitates the impact analysis of hidden terminal problem on the PDR and PRR computation in a more precise manner.

Published in:

IEEE Transactions on Computers  (Volume:62 ,  Issue: 5 )