By Topic

The sample average approximation method for multi-objective stochastic optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sujin Kim ; Nat. Univ. of Singapore, Singapore, Singapore ; Jong-hyun Ryu

In this paper, we consider black-box problems where the analytic forms of the objective functions are not available, and the values can only be estimated by output responses from computationally expensive simulations. We apply the sample average approximation method to multi-objective stochastic optimization problems and prove the convergence properties of the method under a set of fairly general regularity conditions. We develop a new algorithm, based on the trust-region method, for approximating the Pareto front of a bi-objective stochastic optimization problem. At each iteration of the proposed algorithm, a trust region is identified and quadratic approximate functions for the expected objective functions are built using sample average values. To determine non-dominated solutions in the trust region, a single-objective optimization problem is constructed based on the approximate objective functions. After updating the set of non-dominated solutions, a new trust region around the most isolated point is determined to explore areas that have not been visited. The numerical results show that our proposed method is feasible, and the performance can be significantly improved with an appropriate sample size.

Published in:

Simulation Conference (WSC), Proceedings of the 2011 Winter

Date of Conference:

11-14 Dec. 2011