Cart (Loading....) | Create Account
Close category search window

Clarification of transition conditions for eye movement while generating a trajectory using the upper limb

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Toyoda, N. ; Mech. Eng. Dept., Yokohama Nat. Univ., Yokohama, Japan ; Yamamoto, R. ; Yabuta, T.

This paper describes the experimental analysis of eye movement during the generation of a trajectory by the human upper limb, carried out to elucidate the human mechanism for visual-information recognition. In the experiments preformed, subjects were asked to draw the trajectories of some kinds of images: a complete circle, semicircle, stippled circle. Reflective markers were attached to the subjects for motion capture, and a head-mounted eye-mark recorder was used to record eye movement. The results showed that the subjects adopted an eye-movement pattern called the subgoal travel method (fixating in the vicinity of the fingertip while drawing/tracing) for the complete circle. Subsequently, when the target trajectory was one of incomplete shapes, some subjects continued following the subgoal travel method by drawing the missing part of the target trajectory, while others followed two other eye-movement patterns. The first is called the center-point fixation method, in which subjects consider the center point as the most important point for generating the target-image trajectory, and therefore, fix their gaze at the center point throughout the experiment. The second is called the point-to-point travel method, in which the subjects' gazes shift between the center point of a displayed image and their fingertip. The results showed that the center-point fixation method provides greater visual information than the subgoal travel method. Further, the results confirmed that the eye-movement pattern, movement accuracy, and drawing speed are correlated. Additional experiments clarified the conditions for which different eye-movement patterns are suitable: the subgoal travel method is suitable for high-accuracy drawing; the center-point fixation method is suitable for higher-speed drawing. This study has revealed some interesting points underlying the eye-movement strategy used by humans for generating a trajectory.

Published in:

System Integration (SII), 2011 IEEE/SICE International Symposium on

Date of Conference:

20-22 Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.