By Topic

Semisupervised pixel classification of remote sensing imagery using transductive SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chakraborty, D. ; Dept. of Electron. & Commun., Murshidabad Coll. of Eng. & Technol., Murshidabad, India ; Maulik, U.

This article introduces a semisupervised support vector machine classification technique that exploits both labeled and unlabeled points for addressing the problem of pixel classification of remote sensing images. The proposed method is based on the transductive inference and in particular transductive SVM (TSVM). Transductive SVM progressively searches a reliable separating hyperplane in the high dimensional space through iterative method exploiting both labeled and unlabeled samples. In particular, a thresholding strategy and similarity in classification between successive transductive sets are exploited to select the reliable samples from the unlabeled set. The proposed technique is applied on two labeled datasets and one large unlabeled image dataset: IRS image of Mumbai and compared with the standard SVM and progressive TSVM (PTSVM). Experimental results confirm that employing this learning scheme removes unnecessary points to a great extent from the unlabeled set and increases the accuracy level on the other hand. Comparison is made in terms of accuracy for the numeric datasets and quantitative cluster validity indices as well as classified image quality for the image dataset.

Published in:

Recent Trends in Information Systems (ReTIS), 2011 International Conference on

Date of Conference:

21-23 Dec. 2011