Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

In situ 3D imaging of alveoli with a 30 gauge side-facing optical needle probe

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xiaojie Yang ; Opt. + Biomed. Eng. Lab., Univ. of Western Australia, Crawley, WA, Australia ; McLaughlin, R.A. ; Lorenser, D. ; Kirk, R.W.
more authors

In situ imaging of alveoli and small airways with optical coherence tomography (OCT) needle probes has significant potential in the study and clinical assessment of lung disease. We present the smallest reported OCT needle probe capable of acquiring 3D volumetric data. The side-facing needle probe comprises miniaturized focusing optics consisting of no-core and GRIN fibre, terminated with a reflection-coated, fibre tip beam deflector. The optics are encased within a 30-gauge (outer diameter 310 μm) needle, and interfaced to a spectral-domain OCT scanner. Multiple 3D-OCT data sets were acquired on preterm lamb lungs (excised) filled with amniotic fluid and saline. Results demonstrated the ability of such a probe to image individual alveoli and bronchioles, and enabled the rendering of 3D volumetric visualisations of the data. We observed notably less tissue distortion than in earlier work with larger 23 gauge needle probes.

Published in:

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2011 Seventh International Conference on

Date of Conference:

6-9 Dec. 2011