Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Computational models reveal non-linearity in integration of local motion signals by insect motion detectors viewing natural scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
O'Carroll, D.C. ; Adelaide Centre for Neurosci. Res., Univ. of Adelaide, Adelaide, SA, Australia ; Barnett, P.D. ; Nordstrom, K.

Motion detection in animals and humans employs non-linear correlation of local spatiotemporal contrast induced by movement through the environment to estimate local motion. An undesirable consequence of this mechanism is that variability in pattern structure and contrast inherent in natural scenes profoundly influences local motion responses. In fly motion detection, this `pattern noise' is mitigated in part by spatial integration across wide regions of space to form matched filters for expected higher order patterns of optical flow. While this spatial averaging provides a partial solution to the pattern noise problem, recent work using physiological techniques highlights contributions to velocity coding from static non-linear spatial integration mechanisms (spatial gain control) and dynamic temporal gain control mechanisms. Little is known, however, about how such non-linearities co-ordinate to assist neural coding in the context of the motion of natural scenes. In this paper we used a simple computational model for an array of elaborated elementary motion detector (EMDs) based on the classical Hassenstein-Reichardt correlation model, as a predictor for the local pattern dependence of responses to a set of natural scenes as used in our recent work on velocity coding. Our results reveal that receptive field alone is a poor predictor of the spatial integration properties of these neurons. If anything, additional non-linearity appears to enhance the pattern dependence of the response.

Published in:

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2011 Seventh International Conference on

Date of Conference:

6-9 Dec. 2011