By Topic

Simple Analytical Expressions for the Force and Torque of Axial Magnetic Couplings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thierry Lubin ; Groupe de Recherche en Electrotechnique et Electronique de Nancy, Université Henri Poincaré, 54506 Nancy, France ; Smail Mezani ; Abderrezak Rezzoug

In this paper, a theoretical analysis of an axial magnetic coupling is presented, leading to new closed-form expressions for the magnetic axial force and torque. These expressions are obtained by using a 2-D approximation of the magnetic coupling geometry (mean radius model). The analytical method is based on the solution of Laplace's and Poisson's equations by the separation of variables method. The influence of geometrical parameters such as number of pole pairs and air-gap length is studied. Magnetic field distribution, axial force, and torque computed with the proposed 2-D analytical model are compared with those obtained from 3-D finite elements simulations and experimental results.

Published in:

IEEE Transactions on Energy Conversion  (Volume:27 ,  Issue: 2 )